By Topic

The Tiled Bitmap Forensic Analysis Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pavlou, K.E. ; Univ. of Arizona, Tucson, AZ, USA ; Snodgrass, R.T.

Tampering of a database can be detected through the use of cryptographically strong hash functions. Subsequently, applied forensic analysis algorithms can help determine when, what, and perhaps ultimately who and why. This paper presents a novel forensic analysis algorithm, the tiled Bitmap algorithm, which is more efficient than prior forensic analysis algorithms. It introduces the notion of a candidate set (all possible locations of detected tampering(s)) and provides a complete characterization of the candidate set and its cardinality. An optimal algorithm for computing the candidate set is also presented. Finally, the implementation of the tiled Bitmap algorithm is discussed, along with a comparison to other forensic algorithms in terms of space/time complexity and cost. An example of candidate set generation and proofs of the theorems and lemmata and of algorithm correctness can be found in the appendix, which can be found on the Computer Society Digital Library at

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 4 )