By Topic

Building a Rule-Based Classifier—A Fuzzy-Rough Set Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Suyun Zhao ; Sch. of Math. & Comput. Sci., Hebei Univ., Baoding, China ; Tsang, E.C.C. ; Degang Chen ; Xizhao Wang

The fuzzy-rough set (FRS) methodology, as a useful tool to handle discernibility and fuzziness, has been widely studied. Some researchers studied on the rough approximation of fuzzy sets, while some others focused on studying one application of FRS: attribute reduction (i.e., feature selection). However, constructing classifier by using FRS, as another application of FRS, has been less studied. In this paper, we build a rule-based classifier by using one generalized FRS model after proposing a new concept named as ??consistence degree?? which is used as the critical value to keep the discernibility information invariant in the processing of rule induction. First, we generalized the existing FRS to a robust model with respect to misclassification and perturbation by incorporating one controlled threshold into knowledge representation of FRS. Second, we propose a concept named as ??consistence degree?? and by the strict mathematical reasoning, we show that this concept is reasonable as a critical value to reduce redundant attribute values in database. By employing this concept, we then design a discernibility vector to develop the algorithms of rule induction. The induced rule set can function as a classifier. Finally, the experimental results show that the proposed rule-based classifier is feasible and effective on noisy data.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:22 ,  Issue: 5 )