Cart (Loading....) | Create Account
Close category search window

Visible Reverse k-Nearest Neighbor Query Processing in Spatial Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yunjun Gao ; Sch. of Inf. Syst., Singapore Manage. Univ., Singapore, Singapore ; Baihua Zheng ; Gencai Chen ; Wang-Chien Lee
more authors

Reverse nearest neighbor (RNN) queries have a broad application base such as decision support, profile-based marketing, resource allocation, etc. Previous work on RNN search does not take obstacles into consideration. In the real world, however, there are many physical obstacles (e.g., buildings) and their presence may affect the visibility between objects. In this paper, we introduce a novel variant of RNN queries, namely, visible reverse nearest neighbor (VRNN) search, which considers the impact of obstacles on the visibility of objects. Given a data set P, an obstacle set O, and a query point q in a 2D space, a VRNN query retrieves the points in P that have q as their visible nearest neighbor. We propose an efficient algorithm for VRNN query processing, assuming that P and O are indexed by R-trees. Our techniques do not require any preprocessing and employ half-plane property and visibility check to prune the search space. In addition, we extend our solution to several variations of VRNN queries, including: 1) visible reverse k-nearest neighbor (VRkNN) search, which finds the points in P that have q as one of their k visible nearest neighbors; 2) delta-VRkNN search, which handles VRkNN retrieval with the maximum visible distance delta constraint; and 3) constrained VRkNN (CVRkNN) search, which tackles the VRkNN query with region constraint. Extensive experiments on both real and synthetic data sets have been conducted to demonstrate the efficiency and effectiveness of our proposed algorithms under various experimental settings.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.