Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An Efficient Byzantine-Resilient Tuple Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bessani, A.N. ; Dept. de Inf., Univ. de Lisboa, Lisbon, Portugal ; Correia, M. ; da Silva Fraga, J. ; Lau Cheuk Lung

Open distributed systems are typically composed by an unknown number of processes running in heterogeneous hosts. Their communication often requires tolerance to temporary disconnections and security against malicious actions. Tuple spaces are a well-known coordination model for this kind of systems. They can support communication that is decoupled both in time and space. There are currently several implementations of distributed fault-tolerant tuple spaces but they are not Byzantine-resilient, i.e., they do not provide a correct service if some replicas are attacked and start to misbehave. This paper presents an efficient implementation of a linearizable Byzantine fault-tolerant Tuple Space (LBTS) that uses a novel Byzantine quorum systems replication technique in which most operations are implemented by quorum protocols while stronger operations are implemented by more expensive protocols based on consensus. LBTS is linearizable and wait-free, showing interesting performance gains when compared to a similar construction based on state machine replication.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 8 )