Cart (Loading....) | Create Account
Close category search window

Voltage stability assessment through measurement of a reduced state vector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Begovic, M.M. ; Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA ; Phadke, A.G.

The use of a real-time measurement system for the monitoring and control of voltage stability in power systems calls for the investigation of the possibility of reducing the number of the measurements. A clustering algorithm based on graph theory and an arbitrary coherency function is presented, and its applicability is tested for two proposed coherency criteria. The objective of the measurements was the monitoring of the proximity of the system state to voltage instability. The proximity indicators selected are the minimum singular values of the system Jacobian matrix. In the case of the reduced number of measurements, the approximate Jacobian was determined by assuming that all the elements of the state vector from one cluster have the same values as the one representative measurement taken from that cluster. The proximity indicator was then calculated from such an approximated matrix and compared with the values obtained by simulation when the acquisition of the complete state vector was assumed. The results show that reduced measurements are adequate for predicting voltage instability

Published in:

Power Systems, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Feb 1990

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.