Cart (Loading....) | Create Account
Close category search window
 

Lack of Spatial Correlation in MOSFET Threshold Voltage Variation and Implications for Voltage Scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Drego, N. ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA ; Chandrakasan, A. ; Boning, D.

Due to increased variation in modern process technology nodes, the spatial correlation of variation is a key issue for both modeling and design. We have created a large array test-structure to analyze the magnitude of spatial correlation of threshold voltage (VT) in a 180 nm CMOS process. The data from over 50 k measured devices per die indicates that there is no significant within-die spatial correlation in VT. Furthermore, the across-chip variation patterns between different die also do not correlate. This indicates that Random Dopant Fluctuation (RDF) is the primary mechanism responsible for VT variation and that relatively simple Monte Carlo-type analysis can capture the effects of such variation. While high performance digital logic circuits, at high VDD , can be strongly affected by spatially correlated channel length variation, we note that subthreshold logic will be primarily affected by random uncorrelated VT variation.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:22 ,  Issue: 2 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.