By Topic

On the Direction of Arrival (DoA) Estimation for a Switched-Beam Antenna System Using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gotsis, K.A. ; Dept. of Phys., Aristotle Univ. of Thessaloniki, Thessaloniki ; Siakavara, K. ; Sahalos, J.N.

A generic direction of arrival (DoA) estimation methodology is presented that is based on neural networks (NNs) and designed for a switched-beam system (SBS). The method incorporates the benefits of NNs and SBSs to achieve DoA estimation in a less complex and expensive way compared to the corresponding widely known super resolution algorithms. The proposed technique is step-by-step developed and thoroughly studied and explained, especially in terms of the beam pattern structure and the neuro-computational procedures. Emphasis is given on the direct sequence code division multiple access (DS-CDMA) applications, and particularly the Universal Mobile Telecommunication System (UMTS). Extensive simulations are realized for each step of the method, demonstrating its performance. It is shown that a properly trained NN can accurately find the signal of interest (SoI) angle of arrival at the presence of a varying number of mobile users and a varying SoI to interference ratio. The proposed NN-SBS DoA estimation method can be applied to current cellular communications base stations, promoting the wider use of smart antenna beamforming.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 5 )