By Topic

A Large Area Flexible Array Sensors Using Screen Printing Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wen-Yang Chang ; Dept. of Eng. Sci., Nat. Cheng Kung Univ., Tainan ; Fang, Te-Hua ; Heng-Ju Lin ; Yu-Tang Shen
more authors

A flexible electronics sensor for large area sensing was developed using a screen printing technology with the thixotropy sol-gel materials to form the microstructure patterns on two polyimide (PI) sheets. A flexible sensor is 150times150 mm2, including posts, resistances, bumps, and electrode traces. The space between the top electrode and the resistance layer provided a buffer distance for large bending. Experimental results show that array microstructures have good morphological profiles at a screen speed of 10 mm/s, a squeegee pressure of 213 kPa, and a separation speed of 0.4 mm/s using the print-print mode. A membrane with a bump protrusion had a large displacement and a quick sensitive response because the bump provided a concentrated force of von Mises stress on the membrane center. For printing thick structures, diffusion effects and dimensional shrinkages can be reduced when a paste material with a higher viscosity is used. The results exhibit a potential for using in the flexible sensing and higher temperatures. In additional, the fabrication is the low cost and potential higher throughput in flexible electronics applications.

Published in:

Display Technology, Journal of  (Volume:5 ,  Issue: 6 )