By Topic

A secure mobile healthcare system using trust-based multicast scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boukerche, A. ; Sch. of Inf. Technol. & Eng. (SITE, Univ. of Ottawa, Ottawa, ON ; Yonglin Ren

Due to the introduction of telecommunication technologies in telemedicine services, the expeditious development of wireless and mobile networks has stimulated wide applications of mobile electronic healthcare systems. However, security is an essential system requirement since many patients have privacy concerns when it comes to releasing their personal information over the open wireless channels. For this reason, this study discusses the characteristics and security issues with wireless and pervasive data communications for a ubiquitous and mobile healthcare system which consists of a number of mobile devices and sensors attached to a patient. These devices form a mobile ad hoc sensor network and collect data that are sent to a hospital or healthcare center for monitoring. Subsequently, this paper discusses the innovation and design of a novel trust evaluation model. We then propose a secure multicast strategy that employs trust in order to evaluate the behavior of each node, so that only trustworthy nodes are allowed to participate in communications, while the misbehavior of malicious nodes is effectively prevented. We analyze the security properties of our multicast scheme and evaluate its performance based on simulation experiments. Our experimental results demonstrate that our scheme not only achieves the necessary data transmission in mobile environments, but also provides more security with reasonably little additional overhead.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:27 ,  Issue: 4 )