By Topic

Laboratory tests for single-event effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Buchner, S. ; SFA Inc., Landover, MD, USA ; McMorrow, D. ; Melinger, J. ; Camdbell, A.B.

Integrated circuits are currently tested at accelerators for their susceptibility to single-event effects (SEE's). However, because of the cost and limited accessibility associated with accelerator testing, there is considerable interest in developing alternate testing methods. Two laboratory techniques for measuring SEE, one involving a pulsed laser and the other 252Cf, are described in detail in this paper. The pulsed laser provides information on the spatial and temporal dependence of SEE, information that has proven invaluable in understanding and mitigating SEE in spite of the differences in the physical mechanisms responsible for SEE induced by light and by ions. Considerable effort has been expended on developing 252Cf as a laboratory test for SEE, but the technique has not found wide use because it is severely limited by the low energy and short range of the emitted ions that are unable to reach junctions either covered with dielectric layers or deep below the surface. In fact, there are documented cases where single-event latchup (SEL) testing with 252 Cf gave significantly different results from accelerator testing. A detailed comparison of laboratory and accelerator SEE data is presented in this review in order to establish the limits of each technique

Published in:

Nuclear Science, IEEE Transactions on  (Volume:43 ,  Issue: 2 )