By Topic

Results of Using a Wireless Inertial Measuring System to Quantify Gait Motions in Control Subjects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Iris Tien ; Center for Information Technology Research in the Interest of Society (CITRIS), University of California, Berkeley , USA ; Steven D. Glaser ; Ruzena Bajcsy ; Douglas S. Goodin
more authors

Gait analysis is important for the diagnosis of many neurological diseases such as Parkinson's. The discovery and interpretation of minor gait abnormalities can aid in early diagnosis. We have used an inertial measuring system mounted on the subject's foot to provide numerical measures of a subject's gait (3-D displacements and rotations), thereby creating an automated tool intended to facilitate diagnosis and enable quantitative prognostication of various neurological disorders in which gait is disturbed. This paper describes the process used for ensuring that these inertial measurement units yield accurate and reliable displacement and rotation data, and for validating the preciseness and robustness of the gait-deconstruction algorithms. It also presents initial results from control subjects, focusing on understanding the data recorded by the shoe-mounted sensor to quantify relevant gait-related motions.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:14 ,  Issue: 4 )