By Topic

Distribution of Target Registration Error for Anisotropic and Inhomogeneous Fiducial Localization Error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moghari, M.H. ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON ; Abolmaesumi, P.

In point-based rigid-body registration, target registration error (TRE) is an important measure of the accuracy of the performed registration. The registration's accuracy depends on the fiducial localization error (FLE) which, in turn, is due to the measurement errors in the points (fiducials) used to perform the registration. FLE may have different characteristics and distributions at each point of the registering data sets, and along each orthogonal axis. Previously, the distribution of TRE was estimated based on the assumption that FLE has an independent, identical, and isotropic or anisotropic distribution for each point in the registering data sets. In this article, we present a general solution based on the maximum likelihood (ML) algorithm that estimates the distribution of TRE for the cases where FLE has an independent, identical or inhomogeneous, isotropic or anisotropic, distribution at each point in the registering data sets, and when an algorithm is available that is capable of calculating the optimum registration to first order. Mathematically, we show that the proposed algorithm simplifies to the one proposed by Fitzpatrick and West when FLE has an independent, identical, and isotropic distribution in the registering data sets. Furthermore, we use numerical simulations to show that the proposed algorithm accurately estimates the distribution of TRE when FLE has an independent, inhomogeneous, and anisotropic distribution in the registering data sets.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 6 )