By Topic

Incremental Learning of Statistical Motion Patterns With Growing Hidden Markov Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vasquez, D. ; Autonomous Syst. Lab., Swiss Fed. Inst. of Technol., Zurich, Switzerland ; Fraichard, T. ; Laugier, C.

Modeling and predicting human and vehicle motion is an active research domain. Due to the difficulty of modeling the various factors that determine motion (e.g., internal state and perception), this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g., camera and laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use offline learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. In this paper, we present an approach where motion patterns can be learned incrementally and in parallel with prediction. Our work is based on a novel extension to hidden Markov models (HMMs) - called growing hidden Markov models - which gives us the ability to incrementally learn both the parameters and the structure of the model.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:10 ,  Issue: 3 )