By Topic

A Parameterization-Based Numerical Method for Isotropic and Anisotropic Diffusion Smoothing on Non-Flat Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joshi, A.A. ; Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA ; Shattuck, D.W. ; Thompson, P.M. ; Leahy, R.M.

Neuroimaging data, such as 3D maps of cortical thickness or neural activation, can often be analyzed more informatively with respect to the cortical surface rather than the entire volume of the brain. Any cortical surface-based analysis should be carried out using computations in the intrinsic geometry of the surface rather than using the metric of the ambient 3D space. We present parameterization-based numerical methods for performing isotropic and anisotropic filtering on triangulated surface geometries. In contrast to existing FEM-based methods for triangulated geometries, our approach accounts for the metric of the surface. In order to discretize and numerically compute the isotropic and anisotropic geometric operators, we first parameterize the surface using a p-harmonic mapping. We then use this parameterization as our computational domain and account for the surface metric while carrying out isotropic and anisotropic filtering. To validate our method, we compare our numerical results to the analytical expression for isotropic diffusion on a spherical surface. We apply these methods to smoothing of mean curvature maps on the cortical surface, a step commonly required for analysis of gyrification or for registering surface-based maps across subjects.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 6 )