By Topic

Positive Polynomial Constraints for POD-based Model Predictive Controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Oscar Mauricio Agudelo ; Dept. of Electr. Eng. (ESAT), Katholieke Univ. Leuven, Heverlee ; Michel Baes ; Jairo JosÉ Espinosa ; Moritz Diehl
more authors

This paper presents an application of positive polynomials to the reduction of the number of temperature constraints of a proper orthogonal decomposition (POD)-based predictive controller for a non-isothermal tubular reactor. The objective of the controller is to maintain the reactor at a desired operating condition in spite of disturbances in the feed flow, while keeping the maximum temperature low enough to avoid the formation of undesired byproducts. The controller is based on a model derived by means of POD, which reduces the high dimensionality of the discretized system used to approximate the partial differential equations that model the reactor. However, POD does not lead to a reduction in the number of temperature constraints which is typically very large. If we use univariate polynomials to approximate part of the basis vectors derived with the POD technique, it is possible to apply the theory of positive polynomials to find good approximations of the temperature constraints by linear matrix inequalities and to get a reduction in their number. This is the approach that is followed in this paper. The simulation results show that the predictive controller presented a good behavior and that it dealt with the temperature constraints very well.

Published in:

IEEE Transactions on Automatic Control  (Volume:54 ,  Issue: 5 )