By Topic

The Role Of The Lamarck Hypothesis In The Grammatical Evolution Guided By Reinforcement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mingo, J.M. ; Dept. de Inf., Univ. Carlos III de Madrid, Leganes ; Aler, R.

Grammatical evolution is an evolutionary algorithm able to develop programs in any language, defined by a grammar. The evolutionary process may be improved if we let the individuals learn during their lifetime. with this aim, the grammatical evolution guided by reinforcement, an algorithm which merges evolution and learning, was created. Grammatical evolution guided by reinforcement uses a Lamarckian mechanism for replacing the original genotypes when a successful learning has occurred. This paper explores the role of the Lamarckian hypothesis. At the same time, grammatical evolution guided by reinforcement is tested in a new domain: autonomous navigation in a Kephera robot simulation.

Published in:

Latin America Transactions, IEEE (Revista IEEE America Latina)  (Volume:6 ,  Issue: 6 )