By Topic

Transmit beamforming method based on maximum-norm combining for MIMO systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heunchul Lee ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA ; Seokhwan Park ; Inkyu Lee

In this paper, we present a low-complexity method to generate a transmit beamforming vector for multiple-input-multiple-output (MIMO) systems. We begin by introducing new definitions regarding orthogonality between two complex valued vectors and then present new expressions of complex rotation matrices for the complex vector orthogonalization. The rotation matrices are utilized to derive the weight vector for the maximum-norm combining (MNC) process of two complex vectors, which provides a constructive basis for a new beamforming method. The proposed transmit beamforming method uses successive column combining of MIMO channel matrices based on MNC, and as a result, an approximate solution to the optimum beamforming vector is obtained. The proposed method offers a good tradeoff between complexity and performance. Simulation results demonstrate that the proposed beamforming method achieves the near-optimal performance with much reduced computational complexity, compared to the optimal beamforming scheme using singular-value decomposition (SVD) of the channel matrix.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:8 ,  Issue: 4 )