By Topic

A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18- \mu m SiGe BiCMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kwang-Jin Koh ; Dept. of Electr. & Comput. Eng., Univ. of California at San Diego, La Jolla, CA ; Jason W. May ; Gabriel M. Rebeiz

This paper demonstrates a 16-element phased-array transmitter in a standard 0.18-mum SiGe BiCMOS technology for Q-band satellite applications. The transmitter array is based on the all-RF architecture with 4-bit RF phase shifters and a corporate-feed network. A 1:2 active divider and two 1:8 passive tee-junction dividers constitute the corporate-feed network, and three-dimensional shielded transmission-lines are used for the passive divider to minimize area. All signals are processed differentially inside the chip except for the input and output interfaces. The phased-array transmitter results in a 12.5 dB of average power gain per channel at 42.5 GHz with a 3-dB gain bandwidth of 39.9-45.6 GHz. The RMS gain variation is < 1.3 dB and the RMS phase variation is < for all 4-bit phase states at 35-50 GHz. The measured input and output return losses are < -10 dB at 36.6-50 GHz, and <-10 dB at 37.6-50 GHz, respectively. The measured peak-to-peak group delay variation is plusmn 20 ps at 40-45 GHz. The output P-1dB is -5plusmn1.5 dBm and the maximum saturated output power is - 2.5plusmn1.5 dBm per channel at 42.5 GHz. The transmitter shows <1.8 dB of RMS gain mismatch and < 7deg of RMS phase mismatch between the 16 different channels over all phase states. A - 30 dB worst-case port-to-port coupling is measured between adjacent channels at 30-50 GHz, and the measured RMS gain and phase disturbances due to the inter-channel coupling are < 0.15 dB and < 1deg, respectively, at 35-50 GHz. All measurements are obtained without any on-chip calibration. The chip consumes 720 mA from a 5 V supply voltage and the chip size is 2.6times3.2 mm2.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:44 ,  Issue: 5 )