Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A 1024-QAM Analog Front-End for Broadband Powerline Communication Up to 60 MHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Bauwelinck, J. ; Dept. of Inf. Technol. INTEC/ IMEC, Ghent Univ., Ghent ; De Backer, E. ; Melange, C. ; Torfs, G.
more authors

A high performance analog front-end (AFE) for broadband powerline communication between 1.6 and 60 MHz is presented. The frequency division multiplexing AFE supports optimum channel selection, avoids disturbing RF signals and allows co-existence with other users of the spectrum. The direct-conversion receiver operates linearly up to a + 18 dBm input level. Tunable low-pass filters, integrated into the receive path, support a wide class of service requirements by channel bandwidth selection. The dynamic range is 99.5 dB for 2 MHz channels, and 90.5 dB for 16 MHz channels. Error vector magnitude measurements are presented for a single-carrier 1024-QAM and a 1024-carrier 64-QAM signal as function of frequency and channel attenuation. For 1024-QAM, the error vector magnitude (EVM) is below or equal to 1.2% rms up to 60 dB of attenuation, whereas the 1024-carrier 64-QAM performs well up to 80 dB of attenuation. The presented chip was fabricated in a 0.25 mum SiGe BiCMOS process, and the measured power consumption from a single 2.5 V supply is 668 mW.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 5 )