By Topic

An Agile, Ultra-Wideband Pulse Radio Transceiver With Discrete-Time Wideband-IF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Frank Zhang ; Dept. of Electr. Eng., Columbia Univ., Dallas, TX ; Anuranjan Jha ; Ranjit Gharpurey ; Peter Kinget

A pulse-based CMOS ultra-wideband transmitter and receiver have been realized using a standard digital 90 nm CMOS process. The transceiver uses digital templates stored in high-speed memories for pulse generation on the transmit side and for correlation on the receive side. This allows fast band switching for multi-band operation and interferer avoidance without the requirement for fast-settling phase-locked loops. The receiver contains a 3.1-9.5 GHz broadband front-end and discrete-time intermediate frequency correlators that achieve a pulse rate of 100 Mpulses/s and has a die area of 1 mm2 while consuming 130 mA from a 1.2 V supply. The transmitter uses interleaved, intermediate frequency digital-to-analog converters followed by partial-order hold reconstruction filters that eliminate sampling images, and a quadrature RF up-converter. 1.25 nJ is spent per transmitted pulse for a pulse-repetition rate of 100 MHz while achieving a broadband image cancellation of 42 dB.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:44 ,  Issue: 5 )