By Topic

Novel Approach for 3-D Reconstruction of Coronary Arteries From Two Uncalibrated Angiographic Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jian Yang ; Sch. of Opt. Eng., Beijing Inst. of Technol., Beijing ; Yongtian Wang ; Yue Liu ; Songyuan Tang
more authors

Three-dimensional reconstruction of vessels from digital X-ray angiographic images is a powerful technique that compensates for limitations in angiography. It can provide physicians with the ability to accurately inspect the complex arterial network and to quantitatively assess disease induced vascular alterations in three dimensions. In this paper, both the projection principle of single view angiography and mathematical modeling of two view angiographies are studied in detail. The movement of the table, which commonly occurs during clinical practice, complicates the reconstruction process. On the basis of the pinhole camera model and existing optimization methods, an algorithm is developed for 3-D reconstruction of coronary arteries from two uncalibrated monoplane angiographic images. A simple and effective perspective projection model is proposed for the 3-D reconstruction of coronary arteries. A nonlinear optimization method is employed for refinement of the 3-D structure of the vessel skeletons, which takes the influence of table movement into consideration. An accurate model is suggested for the calculation of contour points of the vascular surface, which fully utilizes the information in the two projections. In our experiments with phantom and patient angiograms, the vessel centerlines are reconstructed in 3-D space with a mean positional accuracy of 0.665 mm and with a mean back projection error of 0.259 mm. This shows that the algorithm put forward in this paper is very effective and robust.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 7 )