By Topic

Calculation of Fully Anisotropic Liquid Crystal Waveguide Modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Beeckman, Jeroen ; Dept. of Electron. & Inf. Syst., Ghent Univ., Ghent, Belgium ; James, R. ; Fernandez, F.A. ; De Cort, W.
more authors

The accurate analysis of optical waveguides is an important issue when designing devices for optical communication. Waveguides combined with liquid crystals have great potential because they allow waveguide tuning over a wide range using low voltages. In this paper, we present calculations that combine an advanced algorithm for calculating liquid crystal behavior and a finite-element mode solver that is able to incorporate the full anisotropy of the materials. Calculation examples demonstrate the validity of our program.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 17 )