By Topic

Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lihan He ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Carin, L.

Bayesian compressive sensing (CS) is considered for signals and images that are sparse in a wavelet basis. The statistical structure of the wavelet coefficients is exploited explicitly in the proposed model, and, therefore, this framework goes beyond simply assuming that the data are compressible in a wavelet basis. The structure exploited within the wavelet coefficients is consistent with that used in wavelet-based compression algorithms. A hierarchical Bayesian model is constituted, with efficient inference via Markov chain Monte Carlo (MCMC) sampling. The algorithm is fully developed and demonstrated using several natural images, with performance comparisons to many state-of-the-art compressive-sensing inversion algorithms.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 9 )