By Topic

Image Denoising Using Mixtures of Projected Gaussian Scale Mixtures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Goossens, B. ; Dept. of Telecommun. & Inf. Process. (TELIN-IPI-IBBT), Ghent Univ., Ghent, Belgium ; Pizurica, A. ; Philips, W.

We propose a new statistical model for image restoration in which neighborhoods of wavelet subbands are modeled by a discrete mixture of linear projected Gaussian scale mixtures (MPGSM). In each projection, a lower dimensional approximation of the local neighborhood is obtained, thereby modeling the strongest correlations in that neighborhood. The model is a generalization of the recently developed Mixture of GSM (MGSM) model, that offers a significant improvement both in PSNR and visually compared to the current state-of-the-art wavelet techniques. However, the computation cost is very high which hampers its use for practical purposes. We present a fast EM algorithm that takes advantage of the projection bases to speed up the algorithm. The results show that, when projecting on a fixed data-independent basis, even computational advantages with a limited loss of PSNR can be obtained with respect to the BLS-GSM denoising method, while data-dependent bases of Principle Components offer a higher denoising performance, both visually and in PSNR compared to the current wavelet-based state-of-the-art denoising methods.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 8 )