By Topic

A Multilayered Audiovisual Streaming System Using the Network Bandwidth Adaptation and the Two-Phase Synchronization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chung-Ming Huang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chung-Wei Lin ; Chuang, Cheng-Yen

Synchronous audiovisual streaming and playout are two of the major issues in the multimedia communication network. However, the past corresponding researches of media synchronization mainly focused on the mono-quality and single-layer (nonscalable) audiovisual data. To overcome challenges of ubiquitous multimedia streaming, a scalable audiovisual coder that can provide flexible scalabilities and adaptive streaming control to adapt to complicated network situations are both required. This paper proposes a multilayered audiovisual streaming scheme to deliver layered audiovisual data synchronously, which is called ML-AVSS. Fine-granular scalability (FGS) and bit-sliced arithmetic coding (BSAC) techniques are used to segment video and audio data into one base-layer and multiple enhancement-layer bitstreams. With advantages of audiovisual layer coding, a de-jitter procedure, a conditional retransmission mechanism and a playout synchronization mechanism are designed to transmit hybrid multilayered audiovisual bitstreams in consideration of the result of a network bandwidth adaptation and the distinct decoding time-complexity. Experimental results show that the proposed ML-AVSS is a feasible streaming scheme to overcome challenges of ubiquitous multimedia streaming, e.g., constrained channel bandwidth, quality degradation, unsmooth playout, etc.

Published in:

Multimedia, IEEE Transactions on  (Volume:11 ,  Issue: 5 )