By Topic

Minimum Distance between Pattern Transformation Manifolds: Algorithm and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kokiopoulou, E. ; Signal Process. Lab. (LTS4), Ecole Polytech. Fed. de Lausane (EPFL), Lausanne ; Frossard, P.

Transformation invariance is an important property in pattern recognition, where different observations of the same object typically receive the same label. This paper focuses on a transformation-invariant distance measure that represents the minimum distance between the transformation manifolds spanned by patterns of interest. Since these manifolds are typically nonlinear, the computation of the manifold distance (MD) becomes a nonconvex optimization problem. We propose representing a pattern of interest as a linear combination of a few geometric functions extracted from a structured and redundant basis. Transforming the pattern results in the transformation of its constituent parts. We show that, when the transformation is restricted to a synthesis of translations, rotations, and isotropic scalings, such a pattern representation results in a closed-form expression of the manifold equation with respect to the transformation parameters. The MD computation can then be formulated as a minimization problem whose objective function is expressed as the difference of convex functions (DC). This interesting property permits optimally solving the optimization problem with DC programming solvers that are globally convergent. We present experimental evidence which shows that our method is able to find the globally optimal solution, outperforming existing methods that yield suboptimal solutions.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 7 )