By Topic

Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Porat, B. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Friedlander, Benjamin

The high-order ambiguity function (HAF) is a nonlinear operator designed to detect, estimate, and classify complex signals whose phase is a polynomial function of time. The HAF algorithm, introduced by Peleg and Porat (1991), estimates the phase parameters of polynomial-phase signals measured in noise. The purpose of this correspondence is to analyze the asymptotic accuracy of the HAF algorithm in the case of additive white Gaussian noise. It is shown that the asymptotic variances of the estimates are close to the Cramer-Rao bound (CRB) for high SNR. However, the ratio of the asymptotic variance and the CRB has a polynomial growth in the noise variance

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 3 )