Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Porat, B. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Friedlander, Benjamin

The high-order ambiguity function (HAF) is a nonlinear operator designed to detect, estimate, and classify complex signals whose phase is a polynomial function of time. The HAF algorithm, introduced by Peleg and Porat (1991), estimates the phase parameters of polynomial-phase signals measured in noise. The purpose of this correspondence is to analyze the asymptotic accuracy of the HAF algorithm in the case of additive white Gaussian noise. It is shown that the asymptotic variances of the estimates are close to the Cramer-Rao bound (CRB) for high SNR. However, the ratio of the asymptotic variance and the CRB has a polynomial growth in the noise variance

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 3 )