Cart (Loading....) | Create Account
Close category search window
 

Biexciton emission from high-quality ZnO films grown on epitaxial GaN by plasma-assisted molecular-beam epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ko, H.J. ; Institute for Materials Research, Tohoku University, Katahira, Aoba-Ku, Sendai 980-8577, Japan ; Chen, Y.F. ; Yao, T. ; Miyajima, K.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.127036 

We have investigated the optical and structural properties of high-quality ZnO films grown on epitaxial GaN (epi-GaN) by plasma-assisted molecular-beam epitaxy employing low-temperature buffer layers. High-resolution x-ray diffraction for both symmetric and asymmetric reflexes shows that crystalline defects in ZnO films have a similarity to epi-GaN used as a substrate. The quality of ZnO epilayers grown on epi-GaN is basically determined by epi-GaN. The photoluminescence (PL) spectrum at 10 K exhibits very sharp exciton emission with a linewidth of 1.5 meV, while deep-level emission is negligible, indicative of small residual strain. At 77 K, PL is dominated by a free-exciton emission line in the low-excitation regime, while it is overtaken by a new emission band due to biexcitons at its low-energy side as the excitation intensity increases. This biexciton emission band emerges even under the intermediate excitation regime of 100 W/cm2, which is 100 times smaller than the previously reported threshold for bulk ZnO. The biexciton binding energy is estimated to be 15 meV, in agreement with previous results. At the higher excitation regime, the emission line due to exciton–exciton scattering dominates the PL spectrum. © 2000 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:77 ,  Issue: 4 )

Date of Publication:

Jul 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.