By Topic

An on-line universal lossy data compression algorithm via continuous codebook refinement. II. Optimality for phi-mixing source models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhen Zhang ; Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA ; En-hui Yang

For pt.I see ibid., vol.42, no.3, p.803-21 (1996). Two versions of the gold-washing data compression algorithm, one with codebook innovation interval and the other with finitely many codebook innovations, are considered. The version of the gold-washing algorithm with codebook innovation interval k is a variant of the gold-washing algorithm such that the codebook is innovated once every k+1 source words during the process of encoding the entire source. It is demonstrated that when this version of the gold-washing algorithm is applied to encode a stationary, φ-mixing source, the expected distortion performance converges to the distortion rate function of the source as the codebook length goes to infinity. Furthermore, if the source to be encoded is a Markov source or a finite-state source, then the corresponding sample distortion performance converges almost surely to the distortion rate function. The version of the gold-washing algorithm with finitely many codebook innovations is a variant of the gold-washing algorithm in which after finitely many codebook innovations, the codebook is held fixed and reused to encode the forthcoming source sequence block by block. Similar results are shown for this version of the gold-washing algorithm. In addition, the convergence speed of the algorithm is discussed

Published in:

Information Theory, IEEE Transactions on  (Volume:42 ,  Issue: 3 )