By Topic

Discrete black and white object recognition via morphological functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sinha, D. ; Dept. of Electr. Eng. & Comput. Sci., Stevens Inst. of Technol., Hoboken, NJ, USA ; Giardina, C.R.

Two morphological algorithms that attempt to recognize a black and white object directly in its discrete domain are presented. The first algorithm is based on covariance functions, while the second is based on a variant of size distribution functions. In both these algorithms, the scale correction has been automated. Also presented is a complete geometric and algebraic characterization of objects that are identical with respect to the proposed methodologies, and it is shown that the induced equivalent classes over binary images contain objects that are structurally very similar. This has been accomplished by introducing the notions of a strongly attached pixel, discrete structure of an image, and a structure preserving operation. An outcome of the analysis is the insight into the relationship between the discrete structure of an image and the induced equivalence classes

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:12 ,  Issue: 3 )