By Topic

Optimization of the surface morphologies and electron mobilities in GaN grown by plasma-assisted molecular beam epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Heying, B. ; Materials Department, College of Engineering, University of California, Santa Barbara, California 93106 ; Smorchkova, I. ; Poblenz, C. ; Elsass, C.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The morphology and electrical properties of homoepitaxial GaN layers grown by molecular beam epitaxy at 720 °C were investigated as a function of Ga/N ratio. GaN films grown with low Ga/N ratios (N-stable regime) are semi-insulating and have heavily pitted morphologies. GaN films grown with higher Ga/N ratios (intermediate regime) have fewer pits with areas of atomically flat surface. The room-temperature electron mobilities in samples grown in the intermediate regime are greater than 800 cm2/V s and increase with Ga/N ratio. At the highest Ga/N ratios (Ga-droplet regime), Ga droplets formed on the surface during growth. Although the surface morphology is free of pits and atomically flat for films grown within the Ga-droplet regime, the mobility decreases significantly compared to films grown in the intermediate regime. Room-temperature electron mobilities as high as 1191 cm2/V s were measured in a GaN film grown with the highest Ga/N ratio within the intermediate regime. © 2000 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:77 ,  Issue: 18 )