By Topic

Low-threshold optically pumped lasing at 444 nm at room temperature with high characteristic temperature from Be-chalcogenide-based single-quantum-well laser structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
7 Author(s)
Chang, J.H. ; Institute for Materials Research, Tohoku University, Aoba-ku, Sendai 980, Japan ; Cho, M.W. ; Godo, K. ; Makino, H.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.124546 

We have achieved low-threshold optically pumped lasing at 444 nm at room temperature with high characteristic temperature (T0) from ZnSe/ZnMgBeSe single-quantum-well structures. The threshold intensity is as low as 15 kW cm-2, while T0 value is as high as 166 K. Lasing is observed up to 473 K. Lasing wavelength of 444 nm at room temperature is the shortest wavelength ever achieved in ZnSe-based laser diode structures. The laser structure includes a single ZnMgBeSe/ZnSe/ZnMgBeSe quantum well with a ZnSe well thickness of 4 nm. The (004) x-ray diffraction rocking curve of the ZnMgBeSe quaternary cladding layers shows a sharp diffraction peak with a full width at half maximum of 21 arcsec which is in contrast to that from a ZnMgSSe cladding layer showing much broader multiple peaks. The observed lasing features are partly ascribed to high crystal quality of the ZnMgBeSe layers and type-I band alignment, as has been supported by photoluminescence in addition to x-ray diffraction measurements. © 1999 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:75 ,  Issue: 7 )