Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Thermodynamic theory of stress distribution in epitaxial Pb(Zr, Ti)O3 thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim, H.Joon ; Department of Materials Science and Engineering, and National Research Laboratory (NRL) for Ferroelectric Phase Transitions, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea ; Oh, S.Hoon ; Jang, Hyun M.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.125275 

A phenomenological thermodynamic model has been developed to account for the effects of the film thickness on various properties of ferroelectric thin films. To this end, we have suitably incorporated a position-dependent stress distribution function into the elastic Gibbs function. Various physical properties can be predicted as a function of the film thickness using this modified thermodynamic formalism. A comparison of the theoretical predictions with experimental values of the average strain and the para-ferro transition temperature indicates that the tensile stress caused by the cubic-tetragonal displacive phase transition dominates over the compressive thermal stress in the epitaxially oriented tetragonal Pb(Zr, Ti)O3 thin films. © 1999 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:75 ,  Issue: 20 )