By Topic

Dielectric properties of epitaxial BaTiO3 thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hoerman, B.H. ; Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208 ; Ford, G.M. ; Kaufmann, L.D. ; Wessels, B.W.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.121691 

The dielectric response of epitaxial BaTiO3 thin films deposited on MgO was measured through surface electrodes as a function of applied bias, frequency, and temperature. The room temperature value of the dielectric constant was ∼500 with a dissipation factor, tan(δ), of 0.05 at 100 kHz. Measurements varying the bias field showed hysteresis of the dielectric response and a tunability of 30% for a maximum applied field of ∼7 MV/m. The frequency response of the dielectric constant is well described by a Curie–von Schweidler power law with an exponent ∼0.04 in the range 1 kHz–13 MHz. The films undergo a diffuse phase transition at temperatures higher than the bulk Curie temperature. The behavior of the dielectric response is attributed to the presence of residual strain in the epitaxial thin films. © 1998 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:73 ,  Issue: 16 )