Cart (Loading....) | Create Account
Close category search window
 

Magnetisation reversal and domain structure in thin magnetic films: theory and computer simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nowak, U. ; Gerhard-Mercator-Univ. Duisburg, Germany

A model is introduced for the theoretical description of nanoscale magnetic films with high perpendicular anisotropy. In the model the magnetic film is described in terms of single domain magnetic grains, interacting via exchange as well as via dipolar forces. Additionally, the model contains anisotropy energy and a coupling to an external magnetic field. Disorder is taken into account in order to describe realistic domain and domain wall structures. Within this framework the dependence of the energy on the film thickness can be discussed. The influence of a finite temperature as well as the dynamics can be modeled by a Monte Carlo simulation. The results on the hysteresis loops, the domain configurations, and the dynamics during the reversal process are in good agreement with experimental findings

Published in:

Magnetics, IEEE Transactions on  (Volume:31 ,  Issue: 6 )

Date of Publication:

Nov 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.