By Topic

Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Straub, M. ; High Resolution Optical Microscopy Group, Max-Planck-Institute for Biophysical Chemistry, D-37070 Göttingen, Germany ; Hell, S.W.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The combination of pulsed-mode excitation multifocal multiphoton microscopy with a high-repetition, time-gated intensified CCD camera enables efficient three-dimensional (3D) fluorescence lifetime imaging. With a 200-ps gate opening at 76 MHz repetition rate, fluorescence decay can be traced in a sequence of images with varying delays between pulse and gate. Fluorophore lifetimes are measured with a precision of a few picoseconds. As an application we show that, upon two-photon excitation at 800 nm, certain pollen samples feature a multiexponential fluorescence relaxation. Our results indicate that efficient four-dimensional microscopy with hundreds of nanometer spatial and tens of picoseconds temporal resolution is within reach. © 1998 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:73 ,  Issue: 13 )