Cart (Loading....) | Create Account
Close category search window

Carrier relaxation and recombination in an InGaN/GaN quantum well probed with time-resolved cathodoluminescence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zhang, X. ; Department of Materials Science and Engineering, University of Southern California, Los Angeles, California 90089-0241 ; Rich, D.H. ; Kobayashi, J.T. ; Kobayashi, N.P.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Spatially, spectrally, and temporally resolved cathodoluminescence (CL) techniques have been employed to examine the optical properties and kinetics of carrier relaxation for metalorganic chemical vapor deposition grown InGaN/GaN single quantum wells (QWs). Cathodoluminescence wavelength imaging of the QW sample revealed local band gap variations, indicating the presence of local In composition fluctuations and segregation during growth. A detailed time-resolved CL study shows that carriers generated in the boundary regions will diffuse toward and recombine at InN-rich centers, resulting in a strong lateral excitonic localization prior to radiative recombination. © 1998 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:73 ,  Issue: 10 )

Date of Publication:

Sep 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.