By Topic

Tailoring of the magnetic properties of SmCo5:Nb0.33Cr0.67 nanocomposites using mechanical alloying

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schalek, R.L. ; Center for Mater. Res. & Anal., Nebraska Univ., Lincoln, NE, USA ; Leslie-Pelecky, Diandra L. ; Knight, J. ; Sellmyer, D.J.
more authors

Nanocomposite structures composed of ferromagnetic particles dispersed in a matrix are systems in which the magnetic properties can be tailored by varying the size and spacing of the ferromagnetic particles. Nanocomposites of SmCo5 in a non-magnetic Nb0.33Cr0.67 matrix exhibit a wide variety of magnetic properties. SmCo5 powder is premilled prior to mechanical alloying. The premilling results in a maximum coercivity of 16 kOe after 2 hours of milling, and an enhanced remanence ratio. Both features may be due to exchange anisotropy and/or exchange coupling between hard and soft ferromagnetic phases. The nanocomposite samples show that, when the SmCo5 particulates are small enough, the primary effect of alloying is to disperse them throughout the matrix with no further refinement of size

Published in:

Magnetics, IEEE Transactions on  (Volume:31 ,  Issue: 6 )