By Topic

Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Elke Lorenz ; Energy Meteorol. Group, Univ. of Oldenburg, Oldenburg ; Johannes Hurka ; Detlev Heinemann ; Hans Georg Beyer

The contribution of power production by photovoltaic (PV) systems to the electricity supply is constantly increasing. An efficient use of the fluctuating solar power production will highly benefit from forecast information on the expected power production. This forecast information is necessary for the management of the electricity grids and for solar energy trading. This paper presents an approach to predict regional PV power output based on forecasts up to three days ahead provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Focus of the paper is the description and evaluation of the approach of irradiance forecasting, which is the basis for PV power prediction. One day-ahead irradiance forecasts for single stations in Germany show a rRMSE of 36%. For regional forecasts, forecast accuracy is increasing in dependency on the size of the region. For the complete area of Germany, the rRMSE amounts to 13%. Besides the forecast accuracy, also the specification of the forecast uncertainty is an important issue for an effective application. We present and evaluate an approach to derive weather specific prediction intervals for irradiance forecasts. The accuracy of PV power prediction is investigated in a case study.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:2 ,  Issue: 1 )