By Topic

A Microbolometer Asynchronous Dynamic Vision Sensor for LWIR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Posch, C. ; Austrian Res. Centers GmbH-ARC, Vienna ; Matolin, D. ; Wohlgenannt, R. ; Maier, T.
more authors

In this paper, a novel event-based dynamic IR vision sensor is presented. The device combines an uncooled microbolometer array with biology-inspired (ldquoneuromorphicrdquo) readout circuitry to implement an asynchronous, ldquospikingrdquo vision sensor for the 8-15 mum thermal infrared spectral range. The sensor's autonomous pixels independently respond to changes in thermal IR radiation and communicate detected variations in the form of asynchronous ldquoaddress-events.rdquo The 64times64 pixel ROIC chip has been fabricated in a 0.35 mum 2P4M standard CMOS process, covers about 4times4 mm2 of silicon area and consumes 8 mW of power. An amorphous silicon (a-Si) microbolometer array has been processed on top of the ROIC and contacted to the pixel circuits. We discuss the bolometer detector properties, describe the pixel circuits and the implemented sensor architecture, and show measurement results of the readout circuits. Subsequently, a DFT-based approach to the characterization of asynchronous, spiking sensor arrays is discussed and applied. Test results and analysis of sensitivity, bandwidth, and noise of the fabricated IR sensor prototype are presented.

Published in:

Sensors Journal, IEEE  (Volume:9 ,  Issue: 6 )