Cart (Loading....) | Create Account
Close category search window
 

Fabrication of a nanometric Zn dot by nonresonant near-field optical chemical-vapor deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kawazoe, T. ; Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, 687-1 Tsuruma, Machida, Tokyo 194-0004, Japan ; Yamamoto, Y. ; Ohtsu, Motoichi

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.1394955 

We demonstrate a technique for the deposition of nanometric Zn dots by photodissociation of gas-phase diethylzinc using an optical near field under nonresonant conditions. The observed deposited Zn dot was less than 50 nm in size. The photodissociation mechanisms are based on the unique properties of optical near fields, i.e., enhanced two-photon absorption, induced near-field transition, and a direct excitation of the vibration-dissociation mode of diethylzinc. © 2001 American Institute of Physics.

Published in:

Applied Physics Letters  (Volume:79 ,  Issue: 8 )

Date of Publication:

Aug 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.