By Topic

Coexistence Issues of Multiple Co-Located IEEE 802.15.4/ZigBee Networks Running on Adjacent Radio Channels in Industrial Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lo Bello, L. ; Dept. of Comput. Eng. & Telecommun., Univ. of Catania, Catania ; Toscano, E.

The characteristics of the IEEE 802.15.4 physical and medium access layers make such a protocol a suitable candidate to support communication between sensors and actuators in industrial environments. As industrial networks may comprise a large number of sensors and actuators and the delay increases with the increased number of nodes, a possible solution to keep the delay small is the use of multiple radio channels to implement different small low-latency communication cells. Although in IEEE 802.15.4 the radio channels do not overlap, recent literature showed that some interference may actually occur. This paper provides a better understanding of cross-channel interference in co-located IEEE 802.15.4 industrial networks and proposes a general methodology for the assessment of IEEE 802.15.4 performance under different cross-channel interference conditions. This methodology allows a network designer to perform on-site but accurate assessments and can be easily deployed in real industrial environments to perform measurements directly in the environment-under-test. A case study based on COTS IEEE 802.15.4 devices is presented to show how to apply our methodology to a real scenario and to discuss the results obtained with one or multiple interferers and varying some MAC level parameters.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:5 ,  Issue: 2 )