Cart (Loading....) | Create Account
Close category search window
 

A numerical solution of linear variable-coefficient partial differential equations with two independent variables based on Kida's optimum approximation theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kida, Y. ; Sch. of Pharm. Sci., Ohu Univ., Koriyama ; Kida, T.

We derive a method of obtaining approximate numerical solution of linear variable-coefficient partial differential equations (PDEs) with two independent variables from Kida's optimum approximation theory. It is shown that a certain generalized filter bank implements linear PDEs. By applying generalized discrete orthogonality of Kida's optimum approximation to this filter bank, we prove that our approximate solution satisfies a given linear PDEs and the corresponding initial or boundary conditions at all given sample points, simultaneously.

Published in:

Information Theory and Its Applications, 2008. ISITA 2008. International Symposium on

Date of Conference:

7-10 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.