By Topic

Novel gradient coil set with canceled net thrust force for nuclear magnetic resonance applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. S. Petropoulos ; NMR Div., Picker Int. Inc., Highlands Hts., OH, USA ; M. A. Morich

The interaction of the spatially varying main field components of a Magnetic Resonance Imaging (MRI) system with the currents of a gradient coil set generates axial and transverse Lorentz forces. In this paper, a novel technique for designing minimum inductance gradient coils with zero net axial and lateral Lorentz force is presented. Design examples are given for a short magnet geometry. A theoretical comparison between force-canceled and traditional gradient coils reveals a 270 to 2200 fold reduction for the Lorentz force, with up to 12% increase in stored energy

Published in:

IEEE Transactions on Magnetics  (Volume:31 ,  Issue: 6 )