Cart (Loading....) | Create Account
Close category search window
 

Integrated Scheduling of Grid Applications in WDM Optical Light-Trail Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
XuBin Luo ; Sch. of Economic Inf. Eng., Southwestern Univ. of Finance & Econ., Chengdu ; Bin Wang

A novel task graph model, flexible task model (FTM), is proposed for modeling the grid computing tasks and the relationships among the tasks. In this model, a task may generate output before the task completes whereas previous work assumes that no output is available until the task is completed. In addition, a task in FTM can start to execute when it has collected a minimum amount of required input from its predecessors. FTM is more general and flexible than the conventional task graph model considered in previous work. Based on FTM, we investigate the problem of scheduling grid applications that integrates the resource allocation for task execution and service provisioning for subwavelength data communication between the tasks. Data communication between grid tasks under the FTM model is better supported using light-trails in wavelength division multiplexing (WDM) networks, than lightpaths. The objective is to minimize the total amount of time for task completion or makespan. Simulation results show that our proposed scheduling algorithm under FTM significantly reduces the total task completion time compared with that under the conventional task graph model. Moreover, the communication service provisioning using light-trails is very resource efficient.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 12 )

Date of Publication:

June15, 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.