Cart (Loading....) | Create Account
Close category search window
 

Automatic Music Genre Classification Based on Modulation Spectral Analysis of Spectral and Cepstral Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang-Hsing Lee ; Dept. of Comput. Sci. & Inf. Eng., Chung HuaUniversity, Hsinchu ; Jau-Ling Shih ; Kun-Ming Yu ; Hwai-San Lin

In this paper, we will propose an automatic music genre classification approach based on long-term modulation spectral analysis of spectral (OSC and MPEG-7 NASE) as well as cepstral (MFCC) features. Modulation spectral analysis of every feature value will generate a corresponding modulation spectrum and all the modulation spectra can be collected to form a modulation spectrogram which exhibits the time-varying or rhythmic information of music signals. Each modulation spectrum is then decomposed into several logarithmically-spaced modulation subbands. The modulation spectral contrast (MSC) and modulation spectral valley (MSV) are then computed from each modulation subband. Effective and compact features are generated from statistical aggregations of the MSCs and MSVs of all modulation subbands. An information fusion approach which integrates both feature level fusion method and decision level combination method is employed to improve the classification accuracy. Experiments conducted on two different music datasets have shown that our proposed approach can achieve higher classification accuracy than other approaches with the same experimental setup.

Published in:

Multimedia, IEEE Transactions on  (Volume:11 ,  Issue: 4 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.