By Topic

Packet Pacing in Small Buffer Optical Packet Switched Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vijay Sivaraman ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia ; Hossam Elgindy ; David Moreland ; Diethelm Ostry

In the absence of a cost-effective technology for storing optical signals, emerging optical packet switched (OPS) networks are expected to have severely limited buffering capability. To mitigate the performance degradation resulting from small buffers, this paper proposes that optical edge nodes ldquopacerdquo the injection of traffic into the OPS core. Our contributions relating to pacing in OPS networks are three-fold: first, we develop real-time pacing algorithms of poly-logarithmic complexity that are feasible for practical implementation in emerging high-speed OPS networks. Second, we provide an analytical quantification of the benefits of pacing in reducing traffic burstiness and traffic loss at a link with very small buffers. Third, we show via simulations of realistic network topologies that pacing can significantly reduce network losses at the expense of a small and bounded increase in end-to-end delay for real-time traffic flows. We argue that the loss-delay tradeoff mechanism provided by pacing can be instrumental in overcoming the performance hurdle arising from the scarcity of buffers in OPS networks.

Published in:

IEEE/ACM Transactions on Networking  (Volume:17 ,  Issue: 4 )