By Topic

What is a Spectrum Hole and What Does it Take to Recognize One?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tandra, R. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California Berkeley, Berkeley, CA ; Mishra, S.M. ; Sahai, A.

ldquoSpectrum holesrdquo represent the potential opportunities for noninterfering (safe) use of spectrum and can be considered as multidimensional regions within frequency, time, and space. The main challenge for secondary radio systems is to be able to robustly sense when they are within such a spectrum hole. To allow a unified discussion of the core issues in spectrum sensing, the ldquoweighted probability of area recoveredrdquo (WPAR) metric is introduced to measure the performance of a sensing strategy; and the ldquofear of harmful interferencerdquo F HI metric is introduced to measure its safety. These metrics explicitly consider the impact of asymmetric uncertainties (and misaligned incentives) in the system model. Furthermore, they allow a meaningful comparison of diverse approaches to spectrum sensing unlike the traditional triad of sensitivity, probability of false-alarm P FA, and probability of missed-detection P MD. These new metrics are used to show that fading uncertainty forces the WPAR performance of single-radio sensing algorithms to be very low for small values of F HI, even for ideal detectors. Cooperative sensing algorithms enable a much higher WPAR, but only if users are guaranteed to experience independent fading. Lastly, in-the-field calibration for wide-band (but uncertain) environment variables (e.g., interference and shadowing) can robustly guarantee safety (low F HI) even in the face of potentially correlated users without sacrificing WPAR.

Published in:

Proceedings of the IEEE  (Volume:97 ,  Issue: 5 )