By Topic

Neural Decoding of Finger Movements Using Skellam-Based Maximum-Likelihood Decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hyun-Chool Shin ; Department of Electronic Engineering, College of Information Technology, Soongsil University, Seoul, Korea ; Vikram Aggarwal ; Soumyadipta Acharya ; Marc H. Schieber
more authors

We present an optimal method for decoding the activity of primary motor cortex (M1) neurons in a nonhuman primate during single finger movements. The method is based on the maximum-likelihood (ML) inference, which assuming the probability of finger movements is uniform, is equivalent to the maximum a posteriori (MAP) inference. Each neuron's activation is first quantified by the change in firing rate before and after finger movement. We then estimate the probability density function of this activation given finger movement, i.e., Pr(neuronal activation (x)| finger movements (m)). Based on the ML criterion, we choose finger movements to maximize Pr(x|m). Experimentally, data were collected from 115 task-related neurons in M1 as the monkey performed flexion and extension of each finger and the wrist (12 movements). With as few as 20-25 randomly selected neurons, the proposed method decoded single-finger movements with 99% accuracy. Since the training and decoding procedures in the proposed method are simple and computationally efficient, the method can be extended for real-time neuroprosthetic control of a dexterous hand.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:57 ,  Issue: 3 )